The Quantum Simulator for Fundamental Physics (qSimFP) consortium, including 15 investigators from 7 UK Research Organisations and 5 International Partners was formed in 2018-2020. Funding through the Quantum Technology for Fundamental Physics initiative started in November 2020 with the project duration of 3 years and 5 months. Our programme unites the quantum-technology and fundamental-physics communities, with leading scientists from both camps now working together and focusing on common goals.
We are interested in the dynamics of the early universe and black holes, which are fundamental reflections of the interplay between general relativity and quantum fields. The essential physical processes occur when gravitational interactions are strong and quantum effects are important. These situations are difficult to observe and impossible to experiment with, while the existing theoretical approaches are based on approximations that are in need of experimental verification. Our goal is to exploit the recent advances in quantum technologies, often motivated by fundamental physics questions, to make lab-based tests of the theories through analogue quantum simulation.
The initial funding will be used to set up a versatile early universe simulator (Cambridge) and two types of versatile quantum black hole simulators (Nottingham, RHUL and St. Andrews). The experimental facilities will be supported by the qSimFP Fundamental Physics consortium at KCL, Nottingham, RHUL and Newcastle.
We will deliver first scientific results within the scope of that grant. Looking beyond this 3.5-year horizon, we will establish both a new cross-disciplinary community and internationally-leading experimental facilities that will allow us to drive this new field forward for many years to come.
Recent news from the consortium
QSimFP Annual Workshop in London 19-21st September 2022
We are pleased to announce that the 1st QSimFP Annual Workshop will be held from **19th-21st September 2022** in London, at the [Institute of Physics](https://www.iop.org/) and at the [Science Gallery London](https://london.sciencegallery.com/) at King’s College London (click [here](https://www.google.com/maps/@51.5182286,-0.1039892,14z/data=!3m1!4b1!4m3!11m2!2sIwpI5CFVSZGS1q-zAQR6VQ!3e3) for an interactive map). **Day one**: Cosmology Simulators (Venue: [IOP](https://www.iop.org/)) **Day two**: Community Building & Coordinated Outreach Activities (Venue: [Science Gallery London](https://london.sciencegallery.com/)) **Day three**: Black Hole Simulators (Venue: [IOP](https://www.iop.org/)) ___ [Click here to Register](https://forms.office.com/Pages/ResponsePage.aspx?id=7qe9Z4D970GskTWEGCkKHuQ_R4zCsN5KsP8Qgdl9WN1UQTgyUDQyRlFIMTlFUTNKVTNMWTlBNkdVSy4u) <span style="color:red">(Registration is open)</span> ___ Programme, hotel recommendations, and directions coming up soon Please contact _r.raupp@ucl.ac.uk_ for any queries
Nov. 14, 2021New Website
We are currently in the process of launching the new website.
Nov. 14, 2021National Quantum Technology Showcase 2021
QSimFP presented a novel interferometric detection method applied to fluid interfaces as the NQTP Showcase in London, 2021.

Carlo Barenghi

Thomas Billam

Jonathan Braden

Christoph Eigen

Sebastian Erne

August Geelmuyden

Ruth Gregory

Zoran Hadzibabic

Gregoire Ithier

Alexander Jenkins

Matthew Johnson

Anthony Kent

Friedrich Koenig

Jorma Louko

Ian Moss

John Owers-Bradley

Hiranya Peiris

Andrew Pontzen

Xavier Rojas

Joerg Schmiedmayer

Theo Torres

Viktor Tsepelin

William G. Unruh

Silke Weinfurtner

Patrik Švančara
Origin and evolution of the multiply-quantised vortex instability
Sam Patrick, August Geelmuyden, Sebastian Erne, Carlo F. Barenghi, Silke Weinfurtner
Sept. 9, 2021Bubble Clustering in Cosmological First Order Phase Transitions
Dalila Pirvu, Jonathan Braden, Matthew C. Johnson
Aug. 12, 2021False vacuum decay in an ultracold spin-1 Bose gas
Thomas P. Billam, Kate Brown, Ian G. Moss
May 24, 2021The sound-ring radiation of expanding vortex clusters
August Geelmuyden, Sebastian Erne, Sam Patrick, Carlo Barenghi, Silke Weinfurtner
April 15, 2021Simulating cosmological supercooling with a cold atom system II
Thomas P. Billam, Kate Brown, Andrew J. Groszek, Ian G. Moss
Nov. 20, 2020Interferometric Unruh detectors for Bose-Einstein condensates
Cisco Gooding, Steffen Biermann, Sebastian Erne, Jorma Louko, William G. Unruh, Joerg Schmiedmayer, Silke Weinfurtner
Oct. 13, 2020Unruh and analogue Unruh temperatures for circular motion in 3+1 and 2+1 dimensions
Steffen Biermann, Sebastian Erne, Cisco Gooding, Jorma Louko, Jörg Schmiedmayer, William G. Unruh, Silke Weinfurtner